The Algebraic Complexity of Maximum Likelihood Estimation for Bivariate Missing Data
نویسندگان
چکیده
We study the problem of maximum likelihood estimation for general patterns of bivariate missing data for normal and multinomial random variables, under the assumption that the data is missing at random (MAR). For normal data, the score equations have nine complex solutions, at least one of which is real and statistically significant. Our computations suggest that the number of real solutions is related to whether or not the MAR assumption is satisfied. In the multinomial case, all solutions to the score equations are real and the number of real solutions grows exponentially in the number of states of the underlying random variables, though there is always precisely one statistically significant local maxima.
منابع مشابه
The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملEfficient Estimation from Right-Censored Data when Failure Indicators are Missing at Random
The Kaplan–Meier estimator of a survival function is well known to be asymptotically efficient when cause of failure is always observed. It has been an open problem, however, to find an efficient estimator when failure indicators are missing at random. Lo (1991) showed that nonparametric maximum likelihood estimators are inconsistent, and this has led to several proposals of ad hoc estimators, ...
متن کاملEecient Estimation from Right-censored Data When Failure Indicators Are Missing at Random
The Kaplan{Meier estimator of a survival function is well known to be asymp-totically eecient when cause of failure is always observed. It has been an open problem, however, to nd an eecient estimator when failure indicators are missing at random. Lo (1991) showed that nonparametric maximum likelihood estimators are inconsistent, and this has led to several proposals of ad hoc estimators, none ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007